

Welcome to CS103!

Are there “laws of physics”
in computer science?

Key Questions in CS103
● What problems can you solve with a

computer?
● Computability Theory

● Why are some problems harder to solve
than others?
● Complexity Theory

● How can we be certain in our answers to
these questions?
● Discrete Mathematics

Staff Email List (Logistics): cs103-aut2425-staff@lists.stanford.edu

Sean Szumlanski
(Instructor)

Keith Schwarz
(Instructor)

Vyoma Raman
(Head TA)

Elena Sierra
(ACE Instructor)

Clément Dieulesaint
(TA)

Deven Pandya
(TA)

Kaia Li
(TA)

Lucas Bosman
(TA)

Rachel Han
(TA)

Stanley Cao
(TA)

Trevor Carrell
(TA)

Zachary Chen
(TA)

Neel Guha
(TA)

Kanoe Aiu
(TA)

`

mailto:cs103-aut2425-staff@lists.stanford.edu

https://cs103.stanford.edu

Course Website

All course content
will be hosted

here, except for
lecture videos.

https://cs103.stanford.edu/

Prerequisite / Corequisite

CS106B
Some problem sets will have small
coding components. We’ll also
reference some concepts from
CS106B, particularly recursion,

throughout the quarter.

There aren't any math
prerequisites for this course.
High-school algebra should

be enough!

Another Option

CS154
CS154 is more appropriate if you
have a background in the topics

from the first half of this quarter
(set theory, proofwriting, discrete
math, formal logic, graphs, etc.)
Come talk to me after class if

you’re curious about this!

CS103 ACE
● CS103 ACE is an optional, one-unit

companion course to CS103.
● CS103 ACE meets Tuesdays, 3:00PM –

4:50PM and provides additional
practice with the course material in a
small group setting.

● The first course meeting is this Friday,
and that meeting is open to everyone.

● Interested? Apply online using
this link.

● The CS103 ACE materials are
available to everyone. You can pull
them up here.

Elena Sierra
(ACE Instructor)

https://docs.google.com/forms/d/e/1FAIpQLSczlKwP_Gy8zug0efbgp1oLwxw5QW1M5IJZL06EIHVnvgTeJg/viewform
https://web.stanford.edu/class/cs103ace/

Problem Set 0
● Your first assignment, Problem Set 0,

goes out today. It’s due Friday at 1:00PM
Pacific.

● This assignment requires you to set up
your development environment and to
get set up on GradeScope and EdStem.

● There’s no coding involved, but it’s good
to start early in case you encounter any
technical issues.

Recommended Reading

Grading

Assignments
Midterm 1
Midterm 2
Final Exam
Participation

Ten Problem Sets

Completed individually or
in pairs.

Grading

Assignments
Midterm 1
Midterm 2
Final Exam
Participation

First Midterm Exam

Monday, October 21st

7:00PM – 10:00PM

Grading

Assignments
Midterm 1
Midterm 2
Final Exam
Participation

Second Midterm Exam

Monday, November 11th

7:00PM – 10:00PM

Grading

Assignments
Midterm 1
Midterm 2
Final Exam
Participation

Final Exam

Wednesday, December 11th

3:30PM – 6:30PM

Grading

Assignments
Midterm 1
Midterm 2
Final Exam
Participation

Lecture Participation

Details on Monday of next
week!

Approaching this Course
● The material in this class is challenging, but you are well-

equipped to succeed.
● Key recommendations:

● Attend lecture in person. This ensures you stay current with the
concepts and gives time to digest the content.

● Take notes by hand. Explaining concepts in your own words
improves learning and identifies questions to ask.

● Ask questions! That’s what we’re here for. Feel free to ask in lecture,
after class, on EdStem, or in office hours.

● Read the Guides. We post supplementary readings on the website in
the form of “Guides to X.” Those are the main readings for the course.

● Focus on learning. Problem sets are worth much less than the
exams. Prioritize building skills over completion.

● CS103 is more like building a rocket than learning a language:
there’s less frequent feedback you’ll need to review in more
depth.

We've got a big journey ahead of us.

Let's get started!

Introduction to Set Theory

“The chemical elements”

“Cute animals”

“Cool people”

“US coins”

“CS103 students”

, , ,
Set notation: Curly braces
with commas separating out

the elements

A set is an unordered collection of distinct
objects, which may be anything, including other

sets.

Two sets are equal when they have the same
contents, ignoring order.

, ,, , =

These are two
descriptions of the

same set.

Sets cannot contain duplicate elements.
Any repeated elements are ignored.

, ,
, , ,
, ,

=

These are two
descriptions of the

same set.

, , ,∈

The objects that make up a set are called the
elements of that set.

This symbol means “is
an element of.”

, , ,∉

The objects that make up a set are called the
elements of that set.

This symbol means “is
not an element of.”

Sets can contain any number of elements.

Set

=

The empty set
is the set with
no elements.

We denote the
empty set using

this symbol.

Ø

1 1≠

Question: Are these objects equal?

{1}

1
1

This is a
number.

This is a set.
It contains a

number.

Ø Ø≠

Question: Are these objects equal?

Ø {Ø}

Ø
This is the
empty set.

This is a set
with the empty

set in it.

x x≠

No object x is equal to the set containing x.

{x}

This is x
itself.

This is a box
that has x
inside it.

x
x

Infinite Sets
● Some sets contain infinitely many elements!
● The set ℕ = { 0, 1, 2, 3, …} is the set of all the

natural numbers.
● Some mathematicians don't include zero; in this

class, assume that 0 is a natural number.
● The set ℤ = { …, -2, -1, 0, 1, 2, … } is the set of

all the integers.
● Z is from German “Zahlen.”

● The set ℝ is the set of all real numbers.
● e ∈ ℝ, and 4 ∈ ℝ, and -137 ∈ ℝ,

Describing Complex Sets
● Here are some English descriptions of

infinite sets:
“The set of all even natural numbers.”
“The set of all real numbers less than 137.”
“The set of all Python programs.”

● To describe complex sets like these
mathematically, we'll use set-builder
notation.

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural
number

and n is even

Even Natural Numbers

where

{ 0, 2, 4, 6, 8, 10, 12, 14, 16, … }

Set Builder Notation
● A set may be specified in set-builder

notation:
{ x | some property x satisfies }

{ x ∈ S | some property x satisfies }
● For example:

{ n | n ∈ ℕ and n is even }
{ C | C is a set of US coins }
{ r ∈ ℝ | r < 3 }
{ n ∈ ℕ | n < 3 } (the set {0, 1, 2})

Combining Sets

Venn Diagrams

A B

A
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Venn Diagrams

A B

B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Venn Diagrams

A B

A ∪ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Union

{ 1, 2, 3, 4, 5 }

Venn Diagrams

A B

A ∩ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Intersection

{ 3 }

Venn Diagrams

A B

A – B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }

Venn Diagrams

A B

A \ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }

Venn Diagrams

A B

A Δ B
1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric
Difference

{ 1, 2, 4, 5 }

Venn Diagrams

A B

A Δ B

Subsets and Power Sets

Subsets
● A set S is called a subset of a set T

(denoted S ⊆ T) when all elements of S
are also elements of T.

● Examples:
● { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }
● { b, c } ⊆ { a, b, c, d }
● { H, He, Li } ⊆ { H, He, Li }
● ℕ ⊆ ℤ (every natural number is an integer)
● ℤ ⊆ ℝ (every integer is a real number)

Subsets and Elements

{2}
2

Set S

S = { , , , , }{2}2

Subsets and Elements

{2}
2

Set S

∈ S{2}
General intuition:
x ∈ S means you
can point at x
inside of S.

Subsets and Elements

{2}
2

Set S

⊆ S{ , }2

Subsets and Elements

{2}
2

Set S

∉ S{ , }2

Subsets and Elements

{2}
2

Set S

∈ S{ }2

Subsets and Elements

{2}
2

Set S

⊆ S{ }2
General intuition:
A ⊆ B if you can

form A by circling
elements of B.

 2

Subsets and Elements

{2}
2

Set S

⊆ S
(Since 2

isn't a set.)

Subsets and Elements

{2}
2

Set S

Ø ⊆ S

Subsets and Elements

{2}
2

Set S

Ø ∉ S

Subsets and Elements
● We say that S ∈ T when, among the elements of T,

one of them is exactly the object S.
● We say that S ⊆ T when S is a set and every

element of S is also an element of T. (S has to be a
set for the statement S ⊆ T to be true.)

● Although these concepts are similar, they are not
the same! Not all elements of a set are subsets of
that set and vice-versa.

● We have a resource on the course website, the
Guide to Elements and Subsets, that explores this
in more depth.

,,,,

,S =

℘(S) =

This is the power set of S, the set of
all subsets of S. We write the power

set of S as (℘ S).

Formally, (℘ S) = { T | T ⊆ S }.
(Do you see why?)

Ø

What is (Ø)?℘

Answer: {Ø}

Remember that Ø ≠ {Ø}!

Cardinality

Cardinality
● The cardinality of a set is the number of

elements it contains.
● If S is a set, we denote its cardinality as |S|.
● Examples:

● |{whimsy, mirth}| = 2
● |{{a, b}, {c, d, e, f, g}, {h}}| = 3
● |{1, 2, 3, 3, 3, 3, 3}| = 3
● |{ n ∈ ℕ | n < 4 }| = |{0, 1, 2, 3}| = 4
● | Ø | = 0
● | {Ø} | = 1

The Cardinality of ℕ
● What is |ℕ|?

● There are infinitely many natural numbers.
● |ℕ| can't be a natural number, since it's

infinitely large.
● We need to introduce a new term.
● Let's define ₀ℵ = |ℕ|.

● ₀ ℵ is pronounced “aleph-zero,” “aleph-
nought,” or “aleph-null.”

● Question: Why don’t we say |ℕ| = ∞?

Astonishing Fact: Not all infinite sets
have the same cardinality. Some infinite

sets are bigger than others!

More Astonishing Fact: This has
practical consequences!

What does it mean for one set to
be “bigger” than another?

How Big Are These Sets?

, , ,

, ,,

Comparing Cardinalities
● If S and T are sets, we say that |S| = |T|

when there is a way of pairing off the
elements of S and T without leaving
anything uncovered.

, , ,
, ,,

● If S and T are sets, we say |S| < |T| when,
no matter how you pair off the elements
of S and T, there’s always at least one
element of T left uncovered.

Comparing Cardinalities

, ,
, ,,

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.

|ℕ| = |ℤ| = ℵ0

A Beautiful Result: Cantor’s Theorem

Cantor’s Theorem: If S is a set, then |S| < | (℘ S)|.

Stated differently: no matter how you pair off the
elements of a set S with the subsets of S, there is

always some subset of S left uncovered.

x₀

x₁

x₂

x₃

x₄

x₅

… …

x₀ x₂ x₄ …, , ,

x₃ x₅ …, ,

x₀ x₁ x₂ x₅ …,,,,

x₁ x₄ …, ,

…x₂,

x₀ x₅ …x₄, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

x₀

x₁

x₂

x₃

x₄

x₅

…

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

x₀ x₂ x₅ …, , ,

Which element is
paired with this

set?

x₀

x₁

x₂

x₃

x₄

x₅

…

x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

“Flip” this set.
Swap what’s
included and

what’s excluded.

…x₁ x₃ x₄, , ,

x₀

x₁

x₂

x₃

x₄

x₅

…

x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element is
paired with this

set?

…x₁ x₃ x₄, , ,

...

...

x₀

x₁

x₂

x₃

x₄

x₅

…

…And Beyond!
● By Cantor's Theorem:

|ℕ| < | (ℕ)|℘
| (ℕ)| < | ((ℕ))|℘ ℘ ℘

| ((ℕ))| < | (((ℕ)))|℘ ℘ ℘ ℘ ℘
| (((ℕ)))| < | ((((ℕ))))|℘ ℘ ℘ ℘ ℘ ℘ ℘

…
● Not all infinite sets have the same size!
● There is no biggest infinity!
● There are infinitely many infinities!

How does this have any
practical consequences?

What does this have to do
with computation?

“The set of all computer programs”

“The set of all problems to solve”

Every computer program is a string.

So, the number of programs is at most the
number of strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems as
there are sets of strings (see appendix!).

|Programs| |Strings| | (Strings)|℘ |Problems| ≤ ≤ <

|Programs| < |Problems|

There are more problems to
solve than there are programs

to solve them.

It Gets Worse
● Using more advanced set theory, we can

show that there are infinitely more
problems than solutions.

● In fact, if you pick a totally random
problem, the probability that you can
solve it is zero.

● More troubling fact: We've just shown
that some problems are impossible to
solve with computers, but we don't know
which problems those are!

We need to develop a more nuanced
understanding of computation.

Where We're Going
● What makes a problem impossible to solve

with computers?
● Is there a deep reason why certain problems can't be

solved with computers, or is it completely arbitrary?
● How do you know when you're looking at an

impossible problem?
● Are these real-world problems, or are they highly

contrived?
● How do we know that we're right?

● How can we back up our pictures with rigorous
proofs?

● How do we build a mathematical framework for
studying computation?

Next Time
● Mathematical Proof

● What is a mathematical proof?
● How can we prove things with certainty?

Appendix: Stringy Thingies

Strings and Programs
● The source code of a computer program is just a

(long, structured, well-commented) string of text.
● All programs are strings, but not all strings are

necessarily programs.

All possible
programs

All possible
strings

|Programs| ≤ |Strings|

Strings and Problems
● There is a connection between the number

of sets of strings and the number of
problems to solve.

● Let S be any set of strings. This set S gives
rise to a problem to solve:
Given a string w, determine whether w ∈ S.

Strings and Problems
Given a string w, determine whether w ∈ S.

● Suppose that S is the set
S = { "a", "b", "c", …, "z" }

● From this set S, we get this problem:
Given a string w, determine whether

w is a single lower-case English letter.

Strings and Problems
Given a string w, determine whether w ∈ S.

● Suppose that S is the set
S = { "0", "1", "2", …, "9", "10", "11", ... }

● From this set S, we get this problem:
Given a string w, determine whether

w represents a natural number.

Strings and Problems
Given a string w, determine whether w ∈ S.

● Suppose that S is the set
S = { p | p is a legal C++ program }

● From this set S, we get this problem:
Given a string w, determine whether

w is a legal C++ program.

Strings and Problems
● Every set of strings gives rise to a unique

problem to solve.
● Other problems exist as well.

Problems
formed from

sets of strings

All possible
problems

| (Strings)| ≤ |Problems|℘

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

